alchemyst/engine/fov/precomputed_shade/precomputed_shade.go
2019-11-14 22:59:20 +03:00

323 lines
9.6 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package precomputed_shade
import (
"bytes"
"errors"
"lab.zaar.be/thefish/alchemyst-go/engine/fov/basic"
"lab.zaar.be/thefish/alchemyst-go/engine/gamemap"
"lab.zaar.be/thefish/alchemyst-go/engine/types"
"math"
"sort"
)
//Реализация алгоритма от chilly_durango
//https://www.reddit.com/r/roguelikedev/comments/5n1tx3/fov_algorithm_sharencompare/
//Пока не побеждена засветка стен (или это у меня руки кривые) - сложность почти O(N^2)
//Не только у меня:
//chilly_durango:
//I turned down the Radio 4 in my car to think about this on the way home - that's how much this question has been
// bugging me. The two best from all the awful compromises I could consider were:
// - Only lighting walls with light from the player (cheap trick, dutch)
// - Match light value for walls with the highest light value in adjacent floor cell visible to player (seems costly)
/*
Why am I here? Well, I just don't know what to call it - I'm sure it's an established method, and I'm aware there are
probably optimisations to be had. I thought if I roughed out the algorithm here, the r/roguelikedev community would
surely be able to help! I haven't included optimisations here, but if anyone wants them I got 'em :)
Method
Beforehand
- List the cells in your largest-possible FOV, storing X and Y values relative to the center.
- Store the distance from the center for each cell, and sort the list by this in ascending order.
- Store the range of angles occludedAngles by each cell in this list, in clockwise order as absolute integers only.
- Create a 360-char string of 0s called EmptyShade, and a 360-char string of 1s called FullShade
Runtime
- Store two strings CurrentShade and NextShade
- Set CurrentShade to EmptyShade to start.
- While CurrentShade =/= FullShade: step through the Cell List:
- If the distance to the current cell is not equal to the previous distance checked then replace the contents
of the CurrentShade variable with the contents of the NextShade variable.
- If the tested cell is opaque for each angle in the range occludedAngles by the cell, place a 1 at the position
determined by angle%360 in the NextShade string.
- For each angle in the range occludedAngles by the cell, add 1 to the lit value for that cell for each 0
encountered at the position determined by angle%360 in the CurrentShade string.
Notes
Benefits
No messing around with octants
Highly efficient - each cell is only visited once, and checks within that cell are rare. It performs as fast as any
other LOS I've tried but with more options
Human-readable - code and output are highly legible, making it very easy to work with
Flexible - I'm using it for FOV, LOS, renderer, and lighting. Each process is calling the same function, within which
flags control how much data is evaluated and output. It only uses the data it needs to in the context where
its needed so monsters that need a list of things they can see only check if a cell is visible or not, and dont
bother calculating how much visibility they have there. This cuts processing dramatically.
Other links
cfov by Konstantin Stupnik on RogueTemple
Pre-Computed Visiblity Trees on RogueBasin
/r/roguelikedev FAQ Friday on FOV which kicked off this train of thought
/u/pnjeffries on his FOV algorithm which inspired this one
Adam Milazzo's FOV Method Roundup where a similar method described as 'permissive' is detailed
*/
const MIN_LIT_TO_BE_VISIBLE = 3
const MIN_WALL_LIT_TO_BE_VISIBLE = 4
var errNotFoundCell = errors.New("Cell not found")
var errOutOfBounds = errors.New("Cell out of bounds")
type Cell struct {
types.Coords
distance float64
occludedAngles []int //angles occluded by this cell
lit int //light "amount"
}
type CellList []*Cell
type DistanceSorter CellList
func (a DistanceSorter) Len() int { return len(a) }
func (a DistanceSorter) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a DistanceSorter) Less(i, j int) bool { return a[i].distance < a[j].distance }
type precomputedShade struct {
originCoords types.Coords
MaxTorchRadius int
CellList CellList
LightWalls bool
}
func NewPrecomputedShade(maxTorchRadius int) *precomputedShade {
result := &precomputedShade{MaxTorchRadius: maxTorchRadius, LightWalls: true}
result.PrecomputeFovMap()
return result
}
func (ps *precomputedShade) FindByCoords(c types.Coords) (int, *Cell, error) {
for i := range ps.CellList {
if ps.CellList[i].Coords == c {
// Found!
return i, ps.CellList[i], nil
}
}
return 0, &Cell{}, errNotFoundCell
}
func (ps *precomputedShade) IsInFov(coords types.Coords) bool {
rc := ps.fromLevelCoords(coords)
_, cell, err := ps.FindByCoords(rc)
if err != nil {
return false
}
return cell.lit > 0
}
func (ps *precomputedShade) SetLightWalls(value bool) {
ps.LightWalls = value
}
func (ps *precomputedShade) Init() {
ps.PrecomputeFovMap()
}
func (ps *precomputedShade) PrecomputeFovMap() {
max := ps.MaxTorchRadius
minusMax := (-1) * max
zeroCoords := types.Coords{0, 0}
var x, y int
//fill list
for x = minusMax; x < max+1; x++ {
for y = minusMax; y < max+1; y++ {
if x == 0 && y == 0 {
continue;
}
iterCoords := types.Coords{x, y}
distance := zeroCoords.DistanceTo(iterCoords)
if distance <= float64(max) {
ps.CellList = append(ps.CellList, &Cell{iterCoords, distance, nil, 0})
}
}
}
//Do not change cell order after this!
sort.Sort(DistanceSorter(ps.CellList))
//debug
//for _, cell := range ps.CellList {
// fmt.Printf("\n coords: %v, distance: %f, len_occl: %d", cell.Coords, cell.distance, len(cell.occludedAngles))
//}
//Bresanham lines / Raycast
var lineX, lineY float64
for i := 0; i < 720; i++ { // 1/2 of angles
dx := math.Sin(float64(i) / (float64(360) / math.Pi)) //1/2 of angle
dy := math.Cos(float64(i) / (float64(360) / math.Pi))
lineX = 0
lineY = 0
for j := 0; j < max; j++ {
lineX -= dx
lineY -= dy
roundedX := int(basic.Round(lineX))
roundedY := int(basic.Round(lineY))
_, cell, err := ps.FindByCoords(types.Coords{roundedX, roundedY})
if err != nil {
//inexistent coord found
break;
}
cell.occludedAngles = unique(append(cell.occludedAngles, i))
}
}
//for _, cell := range ps.CellList {
// fmt.Printf("\n coords: %v, distance: %f, len_occl: %d", cell.Coords, cell.distance, len(cell.occludedAngles))
//}
}
func (ps *precomputedShade) recalc(level *gamemap.Level, initCoords types.Coords, radius int) {
for i, _ := range ps.CellList {
ps.CellList[i].lit = 0
}
ps.originCoords = initCoords
if radius > ps.MaxTorchRadius {
radius = ps.MaxTorchRadius
}
level.GetTile(initCoords).Visible = true
var fullShade = make([]byte, 720) // 1/2 of angles
for i := range fullShade {
fullShade[i] = 1
}
var emptyShade = make([]byte, 720) // 1/2 of angles
currentShade := emptyShade
nextShade := emptyShade
i := 0
prevDistance := 0.0
for !bytes.Equal(currentShade, fullShade) {
if (i == len(ps.CellList)-1) {
break
}
cell := ps.CellList[i]
i++
if cell.distance != prevDistance {
currentShade = nextShade
}
if cell.distance > float64(radius) {
break
}
lc, err := ps.toLevelCoords(level, initCoords, cell.Coords)
if err != nil {
continue
}
//fmt.Printf("\n level coords: %v", lc)
for _, angle := range cell.occludedAngles {
if level.GetTile(lc).BlocksSight && ps.LightWalls {
//if (nextShade[angle] == 0 && currentShade[angle] == 0) {
if (nextShade[angle] == 0) {
level.GetTile(lc).Visible = true
level.GetTile(lc).Explored = true
}
nextShade[angle] = 1
}
if currentShade[angle] == 0 {
cell.lit = cell.lit + 1
}
}
}
}
func (ps *precomputedShade) ComputeFov(level *gamemap.Level, initCoords types.Coords, radius int) {
level.SetAllInvisible()
ps.recalc(level, initCoords, radius)
for _, cell := range ps.CellList {
//fmt.Printf("\n coords: %v, distance: %f, lit: %d", cell.Coords, cell.distance, cell.lit)
cs, err := ps.toLevelCoords(level, initCoords, cell.Coords)
if cell.lit > 0 && cell.lit > MIN_LIT_TO_BE_VISIBLE {
//if cell.lit > 0 && cell.lit / (ps.MaxTorchRadius - int(cell.distance - 0.4) - 1) > MIN_LIT_TO_BE_VISIBLE {
if err != nil {
continue
}
level.GetTile(cs).Visible = true
level.GetTile(cs).Explored = true
}
//light walls, crutch
//if level.GetTile(cs).BlocksSight && ps.LightWalls {
// if cell.IsAdjacentTo(&types.Coords{0,0}) {
// level.GetTile(cs).Visible = true
// } else {
// maybeLit := false
// for _, maybeNb := range ps.CellList {
// if //int(maybeNb.distance) == int(cell.distance-1) &&
// maybeNb.IsAdjacentTo(&cell.Coords) &&
// (maybeNb.X == cell.X || maybeNb.Y == cell.Y) &&
// maybeNb.lit > MIN_WALL_LIT_TO_BE_VISIBLE { //magic constant!
// maybeLit = true
// }
// }
// if maybeLit {
// level.GetTile(cs).Visible = true
// level.GetTile(cs).Explored = true
// }
// }
//}
}
}
func (ps *precomputedShade) toLevelCoords(level *gamemap.Level, initCoords, relativeCoords types.Coords) (types.Coords, error) {
realCoords := types.Coords{initCoords.X + relativeCoords.X, initCoords.Y + relativeCoords.Y}
if !level.InBounds(realCoords) {
return types.Coords{}, errOutOfBounds
}
return realCoords, nil
}
func (ps *precomputedShade) fromLevelCoords(lc types.Coords) types.Coords {
relativeCoords := types.Coords{lc.X - ps.originCoords.X, lc.Y - ps.originCoords.Y}
return relativeCoords
}
func unique(intSlice []int) []int {
keys := make(map[int]bool)
list := []int{}
for _, entry := range intSlice {
if _, value := keys[entry]; !value {
keys[entry] = true
list = append(list, entry)
}
}
return list
}